

Paper Type: Original Article

Evolution of Remote Corrosion Monitoring Systems: Retrospective Analysis, Current Technologies, and Future Paradigms in Corrosion Detection and Mitigation

Emmanuel Okon Wilson^{1,*} , Charles Onyinegbaliwene Amgbari²

¹ Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, Akwa Ibom, Nigeria; wilson.okon@akwaibompoly.edu.ng

² Department of Mechanical Engineering, Federal Polytechnic, Ekowe, Bayelsa State, Nigeria; charlesamgbari@gmail.com.

Citation:

Received: 01 November 2024

Revised: 16 January 2025

Accepted: 19 March 2025

Wilson, E. O., & Amgbari, O. A. (2024). Evolution of remote corrosion monitoring systems: retrospective analysis, current technologies, and future paradigms in corrosion detection and mitigation. *Journal of materials & manufacturing technology*, 2(1), 80-90.

Abstract

Remote corrosion monitoring has evolved into a critical field, enabling the early detection and mitigation of material degradation across industries such as oil and gas, transportation, and infrastructure. This paper explores the historical development, current state, and future trends of remote corrosion monitoring systems, focusing on advancements in electrochemical sensing, Non-Destructive Evaluation (NDE), and data analytics. Historically, corrosion management relied on periodic manual inspections and destructive testing, limiting its ability to predict failures effectively. The advent of remote monitoring systems marked a paradigm shift by leveraging sensors to capture in situ data on corrosion rate, pitting activity, and environmental factors like humidity, temperature, and chloride concentration. Modern systems integrate advanced techniques such as Electrical Resistance (ER), the use of autonomous robots, and radiographic inspection, amongst other methods, to enhance the reliability of corrosion detection. Current innovations emphasize real-time monitoring, wireless communication, and IoT-enabled networks. These advancements facilitate seamless integration with predictive maintenance strategies and digital twins, allowing for better asset management and risk assessment. Big data analytics and machine learning algorithms are increasingly utilized to analyze complex corrosion datasets, enabling accurate predictions and adaptive control mechanisms. Looking ahead, future developments are poised to revolutionize corrosion monitoring further. Emerging technologies such as nanotechnology-based sensors, fibre optic sensing, and autonomous robotics are expected to enhance sensitivity and expand coverage in challenging environments like subsea pipelines and nuclear facilities. Additionally, advancements in Artificial Intelligence (AI), edge computing, and blockchain for data security will shape the next generation of monitoring systems. This paper provides a comprehensive review of the progression of remote corrosion monitoring systems, highlighting key technologies, challenges, and opportunities. By examining the intersection of material science, engineering, and digital technologies, it outlines a roadmap for advancing corrosion management practices to ensure safety, sustainability, and economic efficiency.

Keywords: Corrosion monitoring, Electrochemical sensing, Real-time monitoring, IoT and radiographic inspection, Non-destructive evaluation.

1 | Introduction

Corrosion has a profound impact on industries such as production, oil exploration, and infrastructure, leading to significant economic, environmental, and safety challenges. In production industries, corrosion degrades

 Corresponding Author: wilson.okon@akwaibompoly.edu.ng

 <https://doi.org/10.48314/jmmt.vi.32>

 Licensee System Analytics. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

machinery, pipelines, and storage tanks, increasing maintenance costs and downtime. Corroded equipment leads to inefficiencies and potential failure, disrupting the production process and reducing profitability. For instance, in chemical manufacturing, corrosion of process vessels can result in contamination of products and safety hazards [1].

In oil exploration, corrosion poses a severe threat to pipelines, drilling rigs, and storage facilities. Offshore and onshore oil platforms often operate in harsh environments with high salinity, temperature variations, and exposure to aggressive chemicals, accelerating corrosion [2]. This degradation leads to pipeline leaks and spills, causing environmental disasters and regulatory penalties. The industry incurs billions of dollars annually in combating corrosion through coatings, cathodic protection, and replacement of corroded parts. For example, corrosion-related failures in oil pipelines can interrupt supply chains and significantly impact global energy markets.

Fig. 1. Effect of corrosion on oil pipe lines.

Infrastructural decay due to corrosion affects bridges, buildings, roads, and public utilities. Steel reinforcement bars in concrete structures are particularly vulnerable, as rusting leads to expansion and cracking of concrete, undermining structural integrity. Corrosion-induced failures in infrastructure can result in catastrophic accidents, loss of life, and economic setbacks [3]. For instance, the collapse of a corroded bridge or tunnel can disrupt transportation networks and necessitate expensive repairs or replacements.

Overall, the effects of corrosion across these sectors underscore the importance of effective corrosion management strategies, including monitoring, use of corrosion-resistant materials, protective coatings, and adherence to maintenance schedules. These measures are essential for ensuring operational safety, protecting the environment, and minimizing economic losses.

Albeit that corrosion can be controlled and its effects reduced the challenge lies in determining the degree to which the propagation of corrosion has occurred per unit time. This in itself is very important as it can aid in improving protection and forecasting performance and lifespan. This paper explores the historical development, current state, and future trends of remote corrosion monitoring systems, focusing on advancements in electrochemical sensing, Non-Destructive Evaluation (NDE), and data analytics.

2 | Modern Corrosion Monitoring Techniques

Corrosion monitoring involves the systematic observation, measurement, and analysis of material degradation over time to detect and evaluate corrosion in various environments. It is a crucial component in the broader strategy of preventing corrosion, as it provides real-time data that helps identify early signs of material breakdown and assess the effectiveness of protective measures.

In ancient times, corrosion monitoring was primarily based on practical observation and empirical methods rather than scientific techniques [4]. Visual inspection was a fundamental approach; people relied on their ability to identify changes in the appearance of metals, such as rust, discolouration, or surface pitting. This method was reactive, addressing visible signs of degradation rather than preventing it [5].

Material selection also played a critical role. Ancient civilizations observed the durability of different materials in various environments and chose metals accordingly. For example, the Romans preferred lead pipes for aqueducts due to their resistance to water-induced corrosion, while copper and bronze were often avoided in humid environments because they tended to develop a green patina. This selection indirectly acted as a form of corrosion monitoring, as materials were chosen to minimize the need for frequent replacement [6].

Another approach involved using sacrificial materials [7]. Craftsmen sometimes placed spare nails, hinges, or other small metal objects alongside critical structures to observe their rate of deterioration. The condition of these items served as a proxy for the integrity of the main structure, offering insights into the progression of corrosion over time.

Giurlani and Innocenti [8], stated that in ancient times, environmental observation played a crucial role in monitoring the corrosion of metals. This mitigation technique involved noticing the effects of factors such as moisture, salt air, or stagnant water on metals and thereby adjusting one's practices accordingly. For example, Roman engineers monitored the wear on aqueduct linings to gauge the impact of water quality on their infrastructure. These ancient methods, though simple, were effective in their contexts and laid the groundwork for modern corrosion monitoring techniques.

3 | Early Recognition of Corrosion as a Problem and Initial Mitigation Efforts

Corrosion, though scientifically understood only in recent centuries, has been recognized as a challenge since antiquity. Early civilizations encountered and attempted to address the degradation of materials in their tools, weapons, and structures [9].

During the ancient periods, the Romans observed corrosion in bronze statues and iron tools. To mitigate this, they applied tar, wax, and oil as protective coatings, precursors to modern paints. In shipbuilding, wooden vessels were protected from degradation using bitumen, a crude form of coating. Metal fasteners were avoided in favour of corrosion-resistant materials like bronze [10].

During the Renaissance (pre-industrial era), scientists like Paracelsus and Georgius Agricola documented the chemical reactions responsible for material degradation in mines and metalwork [11]. Experiments with galvanization emerged, where zinc coatings were applied to iron to inhibit corrosion. This early understanding laid the groundwork for galvanic protection.

In the 19th Century Advances, the formal study of corrosion began with Michael Faraday, who elucidated electrochemical principles underlying corrosion and protection. His work introduced concepts such as anodic and cathodic reactions. The Industrial Revolution saw rapid expansion in iron and steel usage. The need for durable materials spurred innovations, such as the use of chromium-alloyed steels and sacrificial anodes [12].

These early efforts, though rudimentary, marked the inception of corrosion science and control strategies. The transition from empirical observations to scientific understanding in the late 19th century paved the way for modern corrosion monitoring and mitigation techniques.

3.1 | Corrosion Monitoring in the Past

The history of corrosion monitoring reflects humanity's evolving understanding of materials, their interactions with the environment, and the consequences of these interactions. Early approaches to identifying and mitigating corrosion were based on empirical observations, trial-and-error methods, and rudimentary knowledge of chemistry and material science. Over time, scientific advancements laid the

foundation for systematic and reproducible techniques for studying and addressing corrosion [13]. This section delves into the historical progression of corrosion monitoring, beginning with early observations and culminating in the scientific breakthroughs of the 19th and early 20th centuries.

3.1.2 | Empirical observations

In ancient civilizations, corrosion was recognized as a persistent challenge in the use of metals for tools, weapons, and structural applications. The degradation of bronze, iron, and copper artefacts provided some of the earliest evidence of corrosion processes. While the mechanisms of corrosion were not understood at the time, its effects—such as the rusting of iron or the patination of copper—were clearly observed. Ancient societies responded to these phenomena with intuitive methods aimed at prolonging the usability and aesthetics of their materials.

For instance, the Bronze Age saw widespread use of bronze alloys, which, due to their relative resistance to corrosion compared to pure copper, became the material of choice for tools, weapons, and ornaments. Nevertheless, even bronze was not immune to environmental degradation. Archaeological studies reveal that ancient smiths often applied protective coatings, such as animal fats, oils, or waxes, to shield metal surfaces from atmospheric moisture. Similarly, in shipbuilding, ancient mariners protected wooden hulls with bitumen or tar, an early form of organic coating that reduced exposure to corrosive seawater [14].

The use of lead in aqueducts and plumbing systems in Roman engineering represents another significant example of ancient corrosion control. While lead is susceptible to corrosion, the formation of a protective patina of lead carbonate in contact with water often limits further degradation. Roman engineers likely observed and relied on this self-protective behaviour, albeit without a formal understanding of the chemical processes involved [15]. These empirical observations and practices were crucial in shaping the early approaches to managing corrosion, even if they lacked the precision and predictability of modern techniques.

3.1.2 | Scientific breakthroughs

The transition from empirical practices to systematic scientific investigation began in the 18th and 19th centuries, fuelled by the rapid expansion of industry and infrastructure during the Industrial Revolution. The increased use of iron and steel in construction, machinery, and transportation brought the issue of corrosion to the forefront, necessitating a more rigorous understanding of its causes and prevention.

One of the most significant milestones in the scientific study of corrosion was the work of Michael Faraday in the early 19th century. Faraday's pioneering research on electrochemistry provided the theoretical framework for understanding the electrochemical nature of corrosion. His experiments demonstrated that corrosion involves anodic and cathodic reactions, where metal dissolution at the anode is coupled with reduction reactions at the cathode. Faraday's laws of electrolysis quantified the relationship between electric charge and material dissolution, enabling a deeper understanding of the mechanisms driving corrosion [16]. This knowledge was instrumental in developing methods to control and prevent corrosion through electrical and chemical means.

Building on Faraday's findings, the concept of galvanic corrosion was systematically explored. Researchers observed that when two dissimilar metals are in electrical contact in an electrolyte, the less noble metal corrodes preferentially, protecting the more noble metal. This principle was harnessed in the development of galvanic protection methods, such as the use of sacrificial anodes. Early applications included the attachment of zinc anodes to iron structures, a practice that became widespread in the maritime industry to protect ship hulls and underwater pipelines from corrosion.

The 19th century also witnessed the emergence of standardized testing techniques for studying corrosion. As industries sought reliable methods to assess material durability, scientists developed protocols for exposing metals to controlled environments and measuring their degradation rates. For example, immersion tests in saltwater or acidic solutions were used to simulate harsh conditions and evaluate the performance of coatings,

inhibitors, and alloy compositions [17]. These experiments marked the beginning of laboratory-based corrosion research, which allowed for systematic comparisons of different materials and treatments.

Furthermore, the advent of metallurgical microscopy in the late 19th century enabled researchers to study the microstructural effects of corrosion on metals. By examining corroded specimens under magnification, scientists gained insights into phenomena such as intergranular corrosion and pitting, leading to the development of alloying strategies to enhance corrosion resistance. For instance, the addition of chromium to steel to produce stainless steel was a direct result of understanding the role of passive oxide layers in preventing corrosion [18].

The early 20th century continued this trend with the establishment of dedicated research institutions and industrial laboratories focused on corrosion. Standardization bodies, such as the American Society for Testing and Materials (ASTM), began developing guidelines for corrosion testing and monitoring, promoting consistency and reliability in industrial applications [19]. These efforts laid the groundwork for modern corrosion science, which combines empirical observations with rigorous scientific methodologies.

The historical development of corrosion monitoring reflects a gradual shift from empirical observation to scientific inquiry. Ancient practices, rooted in intuition and experience, provided the earliest forms of corrosion mitigation, such as protective coatings and material selection. The scientific breakthroughs of the 19th century, particularly in electrochemistry and materials science, transformed corrosion monitoring into a systematic discipline. Faraday's electrochemical theories, the exploration of galvanic protection, and the standardization of testing techniques not only deepened our understanding of corrosion mechanisms but also paved the way for the sophisticated monitoring technologies used today. This historical perspective highlights the enduring importance of innovation in addressing one of the most persistent challenges in engineering and materials science.

3.2 | Present-Day Corrosion Monitoring Techniques

The modern era of corrosion monitoring has witnessed an extraordinary transformation driven by advancements in materials science, electrochemical engineering, sensor technologies, and digital innovations. Today, corrosion monitoring techniques are designed not only to detect the onset of corrosion but also to predict its progression, allowing for proactive maintenance strategies [20]. These methods span a wide spectrum of approaches, from advanced electrochemical techniques to cutting-edge digital solutions, providing industries with highly precise, reliable, and actionable insights into the state of their assets. This section delves deeply into the current methodologies used for corrosion monitoring, examining their principles, applications, and contributions to contemporary engineering challenges.

3.2.1 | Electrochemical techniques

Form the backbone of many modern corrosion monitoring systems, offering detailed insights into the kinetics of corrosion processes at the molecular level. Among these, potentiodynamic polarization is a widely used method for evaluating the corrosion rate and understanding the electrochemical behaviour of materials in specific environments. This technique involves applying a controlled potential to a metal specimen and measuring the resulting current, which provides a direct indication of anodic and cathodic reactions occurring at the surface [18]. By analyzing the polarization curves, engineers can determine critical parameters such as corrosion potential, passivation behaviour, and susceptibility to localized corrosion phenomena like pitting.

3.2.2 | Electrochemical impedance spectroscopy

This sophisticated method measures the impedance of a material's surface as a function of frequency, providing insights into the mechanisms of corrosion, the effectiveness of protective coatings, and the integrity of passive films. Electrochemical Impedance Spectroscopy (EIS) is particularly valued for its ability to detect early stages of corrosion before visible damage occurs, making it indispensable in industries such as aerospace, where the consequences of material failure can be catastrophic [21]. Additionally, electrochemical noise

analysis, which monitors fluctuations in potential and current, has emerged as a non-invasive technique for studying localized corrosion in real-time.

3.2.3 | Non-destructive testing techniques

These represent another critical pillar of modern corrosion monitoring. Unlike destructive methods that require the removal and potential destruction of material samples, Non-Destructive Testing Techniques (NDT) methods allow for the evaluation of material integrity without causing damage. Among these, ultrasonic testing is extensively used for detecting internal corrosion and wall thinning in pipelines, tanks, and pressure vessels. This technique employs high-frequency sound waves that propagate through the material and reflect off interfaces, such as corroded areas or cracks [22]. By analyzing the reflected signals, inspectors can precisely locate and quantify the extent of corrosion damage.

3.2.4 | Radiographic inspection

This technique uses X-rays or gamma rays, which is another widely applied NDT method for visualizing internal corrosion in metal components. This technique is particularly effective for identifying hidden defects, such as crevice corrosion in welded joints or pitting corrosion in pipelines [23]. Magnetic particle inspection, meanwhile, is commonly used for detecting surface and near-surface defects in ferromagnetic materials. By applying a magnetic field and observing the patterns formed by magnetic particles, engineers can identify cracks, voids, and other irregularities indicative of corrosion.

3.2.5 | Integration of sensor-based monitoring systems

This technique has revolutionized real-time corrosion detection, particularly in industries with extensive and complex infrastructure. Embedded sensors, which are often installed in critical areas of pipelines, storage tanks, and offshore platforms, provide continuous data on environmental conditions and material behaviour [24]. For example, thin-film resistive sensors can measure changes in Electrical Resistance (ER) as metal corrodes, offering a direct and real-time indication of material loss. Similarly, hydrogen sensors are employed to detect hydrogen embrittlement, a phenomenon that weakens metals exposed to hydrogen-rich environments.

3.2.6 | Internet of things

One of the most transformative advancements in corrosion monitoring is the application of remote and digital technologies powered by the Internet of Things (IoT) and cloud-based analytics. IoT-enabled corrosion monitoring systems utilize networks of sensors to collect vast amounts of data on temperature, humidity, pH, and electrochemical parameters [25]. This data is transmitted to cloud platforms, where advanced algorithms analyze trends, identify anomalies, and predict future corrosion risks. Remote monitoring not only enhances the accuracy and efficiency of corrosion assessments but also reduces the need for manual inspections in hazardous or inaccessible locations. For instance, offshore oil and gas platforms, where conditions are harsh and human safety is a priority, benefit significantly from remote corrosion monitoring systems that provide real-time data on structural health.

3.2.7 | The use of digital twin

Digital twins, which create virtual replicas of physical assets, represent another cutting-edge development in this field [26]. By integrating corrosion data into these digital models, engineers can simulate various scenarios, optimize maintenance schedules, and predict the long-term behaviour of materials under different environmental conditions [10]. Machine learning and Artificial Intelligence (AI) further enhance these capabilities by identifying patterns and correlations that may not be apparent through traditional analysis methods.

The role of standards and regulations in advancing corrosion monitoring techniques cannot be overstated. Organizations such as the National Association of Corrosion Engineers (NACE), the International Organization for Standardization (ISO), and the ASTM have developed comprehensive guidelines for

corrosion testing, monitoring, and mitigation. These standards ensure consistency, reliability, and safety in industrial applications, facilitating global collaboration and knowledge sharing. For instance, ISO 9223 provides a framework for classifying corrosivity in atmospheric environments, while ASTM G59 outlines procedures for conducting electrochemical impedance measurements.

The interplay between technological innovation and regulatory frameworks has significantly enhanced the effectiveness of corrosion monitoring. Industry-specific standards, such as those for oil and gas pipelines or aerospace components, address unique challenges and ensure that corrosion monitoring techniques meet the rigorous demands of these sectors. Collaborative efforts between academia, industry, and regulatory bodies continue to drive the development of new monitoring tools, ensuring that they remain aligned with emerging challenges and technological advancements.

3.3 | Future Trends in Corrosion Monitoring

The future of corrosion monitoring is poised for a revolution driven by technological advancements, interdisciplinary innovation, and a growing emphasis on sustainability. As industries grapple with ageing infrastructure, complex materials, and increasingly harsh environments, the demand for sophisticated and efficient corrosion monitoring solutions continues to grow. Emerging trends, including the use of AI, nanotechnology, advanced sensors, and eco-friendly practices, promise to redefine how corrosion is understood, detected, and managed. This section explores these developments in detail, highlighting the transformative potential of future technologies while addressing the challenges and opportunities associated with their adoption.

3.3.1 | The integration of artificial intelligence and machine learning

This represents one of the most transformative advancements in the field of corrosion monitoring. These technologies enable predictive corrosion analysis by processing vast amounts of data collected from sensors, historical records, and environmental models [27]. Machine learning algorithms are designed to identify complex patterns in corrosion behaviour, accounting for variables such as material composition, environmental conditions, and stress factors. By analyzing these variables in real-time, AI-powered systems can provide precise predictions of when and where corrosion is likely to occur [28]. For example, neural networks can model the propagation of pitting corrosion in stainless steel, allowing engineers to implement targeted interventions before structural integrity is compromised. This approach not only enhances the accuracy of corrosion monitoring but also shifts the focus from reactive maintenance to proactive asset management.

3.3.2 | Nanotechnology and smart coatings with self-healing properties

These are another frontier in corrosion prevention and monitoring. Nanotechnology allows for the development of coatings with enhanced barrier properties, such as increased resistance to water and oxygen permeation. Self-healing coatings, embedded with microcapsules containing corrosion inhibitors, can autonomously repair damage when the coating is breached [29]. Upon exposure to environmental triggers such as moisture or pH changes, these microcapsules release their contents, forming a protective layer that prevents further corrosion. This innovation is particularly promising for applications in aerospace, automotive, and marine industries, where maintaining coating integrity is critical. Nanotechnology also extends to the development of nanosensors capable of detecting minute changes in electrochemical properties, enabling highly sensitive and localized corrosion monitoring.

The integration of advanced sensors is expected to revolutionize the way corrosion is monitored in complex and inaccessible environments. Miniaturized and wireless sensors are being designed to withstand harsh conditions, such as extreme temperatures, high salinity, and corrosive gases [30]. These sensors, often based on Microelectromechanical Systems (MEMS) technology, provide real-time data on parameters like pH, humidity, chloride concentration, and electrochemical potential. Wireless communication capabilities allow these sensors to transmit data to centralized systems or cloud platforms, enabling continuous monitoring

without the need for manual inspections [31]. For instance, corrosion sensors embedded in offshore pipelines can relay data on internal corrosion rates to operators, reducing the risk of catastrophic failures.

3.3.3 | The use of autonomous robots equipped with advanced sensing technologies

Autonomous robots equipped with advanced sensing technologies are another emerging trend in corrosion monitoring. These robots are capable of performing inspections and repairs in environments that are hazardous or inaccessible to humans [32]. In the oil and gas industry, for example, Autonomous Underwater Vehicles (AUVs) equipped with ultrasonic and magnetic sensors are used to inspect subsea pipelines for corrosion and mechanical damage. Similarly, drone-based systems are being developed for inspecting corrosion in bridges, storage tanks, and wind turbines [33]. These robots not only enhance the efficiency and safety of corrosion monitoring but also enable precise and repeatable inspections, improving the reliability of data collected over time.

4 | Discussion

Sustainability is becoming a core consideration in the development of future corrosion monitoring solutions. Eco-friendly materials and renewable energy-powered devices are being explored as alternatives to conventional systems that may rely on hazardous substances or non-renewable resources [34]. For instance, biosensors derived from natural polymers and enzymes offer a sustainable option for detecting specific corrosion-related parameters, such as hydrogen sulfide concentration. Similarly, solar-powered sensors and monitoring stations reduce the environmental impact of corrosion monitoring, particularly in remote or off-grid locations. The use of environmentally benign corrosion inhibitors derived from plant extracts or biodegradable compounds further aligns corrosion control practices with global sustainability goals [35].

While the potential of these emerging technologies is immense, their successful implementation will depend on overcoming several challenges. One of the primary obstacles is bridging the gap between laboratory-scale innovation and real-world application. Technologies such as self-healing coatings and AI-based predictive systems require extensive field testing to validate their performance under diverse conditions. Scalability is another critical issue, as many advanced corrosion monitoring solutions remain prohibitively expensive for widespread adoption. Industries must invest in infrastructure, such as sensor networks and data analytics platforms, to fully leverage these technologies.

The adoption of advanced corrosion monitoring techniques also necessitates a skilled workforce capable of interpreting complex data and operating sophisticated systems. Training programs and interdisciplinary collaboration will be essential to ensure that engineers, technicians, and decision-makers can effectively integrate these technologies into their workflows. Furthermore, regulatory frameworks and industry standards must evolve to accommodate new monitoring methods, providing clear guidelines for their implementation and validation.

Despite these challenges, the opportunities presented by future corrosion monitoring technologies are unparalleled. By enhancing the precision, efficiency, and sustainability of corrosion detection and prevention, these innovations have the potential to significantly extend the lifespan of critical infrastructure, reduce maintenance costs, and mitigate environmental risks. Collaboration between academia, industry, and regulatory bodies will be crucial in accelerating the development and adoption of these technologies, ensuring that they meet the complex demands of modern engineering.

Acknowledgments

The authors would like to express their sincere appreciation to all individuals whose valuable comments and support contributed to the successful completion of this study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data Availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

- [1] El Masri, I., Lescop, B., Talbot, P., Vien, G. N., Becker, J., Thierry, D., & Rioual, S. (2020). Development of a RFID sensitive tag dedicated to the monitoring of the environmental corrosiveness for indoor applications. *Sensors and actuators b: chemical*, 322, 128602. <https://doi.org/10.1016/j.snb.2020.128602>
- [2] Diler, E., Larché, N., Thierry, D., & Dégrès, Y. (2014). Biofilm sensor for deep sea. *2014 IEEE sensor systems for a changing ocean (SSCO)*. IEEE. (pp. 1–5). <https://doi.org/10.1109/SSCO.2014.7000368>
- [3] Boéro, J., Schoefs, F., Yañez-Godoy, H., & Capra, B. (2012). Time-function reliability of harbour infrastructures from stochastic modelling of corrosion. *European journal of environmental and civil engineering*, 16(10), 1187–1201. <https://doi.org/10.1080/19648189.2012.688611>
- [4] Khalifeh, R., Lescop, B., Gallée, F., & Rioual, S. (2016). Development of a radio frequency resonator for monitoring water diffusion in organic coatings. *Sensors and actuators a: physical*, 247, 30–36. <https://doi.org/10.1016/j.sna.2016.05.024>
- [5] O'Byrne, M., Ghosh, B., Schoefs, F., & Pakrashi, V. (2014). Regionally enhanced multiphase segmentation technique for damaged surfaces. *Computer-Aided civil and infrastructure engineering*, 29(9), 644–658. <https://doi.org/10.1111/mice.12098>
- [6] Mathiesen, T., Black, A., & Grønvold, F. (2016). Monitoring and inspection options for evaluating corrosion in offshore wind foundations. *Corrosion 2016*, 1–11. <https://doi.org/10.5006/C2016-07702>
- [7] Kumar, M., Kant, S., & Kumar, S. (2019). Corrosion behavior of wire arc sprayed Ni-based coatings in extreme environment. *Materials research express*, 6(10), 106427. <https://doi.org/10.1088/2053-1591/ab3bd8>
- [8] Giurlani, W., Zangari, G., Gambinossi, F., Passaponti, M., Salvietti, E., Di Benedetto, F., ... & Innocenti, M. (2018). Electroplating for decorative applications: Recent trends in research and development. *Coatings*, 8(8), 260. <https://doi.org/10.3390/coatings8080260>
- [9] Sánchez-Amaya, J., Amaya Vázquez, M. R., & Botana, J. (2013). Laser welding of light metal alloys: Aluminium and titanium alloys. In *Handbook of laser welding technologies* (pp. 215–254). <https://doi.org/10.1533/9780857098771.2.215>
- [10] Jones, F. R., & Foreman, J. P. (2015). The response of aerospace composites to temperature and humidity. (pp. 335–369). Woodhead Publishing. <https://doi.org/10.1016/B978-0-85709-523-7.00012-8>
- [11] Kadhim, M. G., & Ali, D. M. T. (2017). A critical review on corrosion and its prevention in the oilfield equipment. *Journal of petroleum research and studies*, 7(2), 162–189. <https://doi.org/10.52716/jprs.v7i2.195>
- [12] Kolotyrkin, J. M. (1963). Pitting corrosion of metals*. *Corrosion*, 19(8), 261t–268t. <https://doi.org/10.5006/0010-9312-19.8.261>
- [13] Gonçalves, M. C., & Margarido, F. (2015). *Materials for construction and civil engineering*. Cham, Switzerland: Springer. <https://doi.org/10.1007/978-3-319-08236-3>
- [14] Prutton, C. F., Frey, D. R., Turnbull, D., & Dlouhy, G. (1945). Corrosion of metals by organic acids in hydrocarbon solvents. *Industrial & engineering chemistry*, 37(1), 90–100. <https://doi.org/10.1021/ie50421a020>
- [15] Feliu, S. (2020). Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges. *Metals*, 10(6), 1-23. <https://doi.org/10.3390/met10060775>
- [16] Akpanyung, K. V., & Loto, R. T. (2019). Pitting corrosion evaluation: A review. *Journal of physics: Conference series* (Vol. 1378, p. 22088). IOP Publishing. <https://doi.org/10.1088/1742-6596/1378/2/022088>

[17] Low-Décarie, E., Boatman, T. G., Bennett, N., Passfield, W., Gavalás-Olea, A., Siegel, P., & Geider, R. J. (2017). Predictions of response to temperature are contingent on model choice and data quality. *Ecology and evolution*, 7(23), 10467–10481. <https://doi.org/10.1002/ece3.3576>

[18] Eliaz, N. (2019). Corrosion of metallic biomaterials: A review. *Materials*, 12(3), 407. <https://doi.org/10.3390/ma12030407>

[19] Shibli, S. M. A., Meena, B. N., & Remya, R. (2015). A review on recent approaches in the field of hot dip zinc galvanizing process. *Surface and coatings technology*, 262, 210–215. <https://doi.org/10.1016/j.surfcoat.2014.12.054>

[20] Laranjo, R. D., & Anacleto, N. M. (2018). Direct smelting process for stainless steel crude alloy recovery from mixed low-grade chromite, nickel laterite and manganese ores. *Journal of iron and steel research international*, 25(5), 515–523. <https://doi.org/10.1007/s42243-018-0068-5>

[21] Laranjo, R. D., & Anacleto, N. M. (2017). Production of Fe-Cr-Ni-Mn alloy by direct smelting of mixed low-grade chromite, nickel laterite and manganese ores with low-grade coal as reductant. *International journal of metallurgical & materials science and engineering (IJMMSE)*, 7(1), 1–12. <https://d1wqxts1xzle7.cloudfront.net/86186448>

[22] Yape, E. O., & Anacleto, N. M. (2014). Direct smelting of chromite and laterite ores with carbon under argon atmosphere. *Advanced materials research*, 849, 170–176. <https://doi.org/10.4028/www.scientific.net/AMR.849.170>

[23] Pal, M. K., & Lavanya, M. (2022). Microbial influenced corrosion: understanding bioadhesion and biofilm formation. *Journal of bio-and triboro-corrosion*, 8(3), 76. <https://doi.org/10.1007/s40735-022-00677-x>

[24] Hanoon, M., Zinad, D. S., Resen, A. M., & Al-Amiry, A. A. (2020). Gravimetric and surface morphology studies of corrosion inhibition effects of a 4-aminoantipyrine derivative on mild steel in a corrosive solution. *International journal of corrosion and scale inhibition*, 9(3), 953–966. <https://dx.doi.org/10.17675/2305-6894-2020-9-3-10>

[25] Kharanzhevskiy, E. V., Reshetnikov, S. M., Efimov, A. V., Gil'mutdinov, F. Z., & Krivilev, M. D. (2020). Application of some inhibitors for improving the corrosion resistance of ceramic coatings deposited on non-alloy steel by short-pulse laser treatment. *International journal of corrosion and scale inhibition*, 9(1), 44. <https://pdfs.semanticscholar.org/1e35/33ec39f13ab53726281205aecb9df16630d5.pdf>

[26] Judran, A., Kadhim, S., & Elah, H. A. (2018). Enhancement of the corrosion resistance for 6009 aluminum alloy by laser treatment. *Kufa journal of engineering*, 9(2), 201–2014. <http://dx.doi.org/10.30572/2018/kje/090215>

[27] Sahoo, P., Das, S., & Davim, J. P. (2016). Surface finish coatings. In *Reference module in materials science and materials engineering*. <https://doi.org/10.1016/B978-0-12-803581-8.09167-0>

[28] Wilson, H., & Erbe, A. (2019). Convection induced by illumination-based metal surface heating increases corrosion potential, corrosion rates. *Electrochemistry communications*, 106, 106513. <https://doi.org/10.1016/j.elecom.2019.106513>

[29] Radivojević, M., Rehren, T., Farid, S., Pernicka, E., & Camurcuoğlu, D. (2017). Repealing the Çatalhöyük extractive metallurgy: The green, the fire and the 'slag.' *Journal of archaeological science*, 86, 101–122. <https://doi.org/10.1016/j.jas.2017.07.001>

[30] Barouni, K., Kassale, A., Albourine, A., Jbara, O., Hammouti, B., & Bazzi, L. (2014). Amino acids as corrosion inhibitors for copper in nitric acid medium: Experimental and theoretical study. *Journal of materials and environmental science*, 5(2), 456–463. https://www.researchgate.net/profile/Frank-T-Edelmann/post/What_is_responsible_for_a_higher_inhibiting_property_of_4-aminosalicylic_acid_on_copper_surface_in_nitric_acid_medium/attachment/61d9a600f5675b211b1ca49b/AS%3A1109990475595776%401641653760407/download/54-JMES-536-2014-Barouni.pdf

[31] Figueira, R. B., Silva, C. J. R., & Pereira, E. V. (2015). Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: A review of recent progress. *Journal of coatings technology and research*, 12(1), 1–35. <https://doi.org/10.1007/s11998-014-9595-6>

[32] al-azzawi, W., Salih, S., Hamood, A. alkhalilq, Al-Azzawi, R., Kzar, M., Jawoosh, H., ... & Takriff, M. (2022). Adsorption and theoretical investigations of a schiff base for corrosion inhibition of mild steel in

an acidic environment. *International journal of corrosion and scale inhibition*, 11, 1063–1082.
<https://doi.org/10.17675/2305-6894-2022-11-3-10>

[33] Alobaidy, A. H., Kadhum, A., Al-Baghdadi, S. B., Al-Amiery, A. A., Kadhum, A. A. H., Yousif, E., & Mohamad, A. B. (2015). Eco-Friendly corrosion inhibitor: Experimental studies on the corrosion inhibition performance of creatinine for mild steel in hcl complemented with Quantum Chemical calculations. *International journal of electrochemical science*, 10(5), 3961–3972. [https://doi.org/10.1016/S1452-3981\(23\)06594-X](https://doi.org/10.1016/S1452-3981(23)06594-X)

[34] Alamiery, A., Mohamad, A. B., Kadhum, A. A. H., & Takriff, M. S. (2022). Comparative data on corrosion protection of mild steel in HCl using two new thiazoles. *Data in brief*, 40, 107838.
<https://doi.org/10.1016/j.dib.2022.107838>

[35] Mustafa, A. M., Sayyid, F. F., Betti, N., Shaker, L. M., Hanoon, M. M., Alamiery, A. A., ... & Takriff, M. S. (2022). Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl) phenyl)-1, 3, 4-triazole. *South African journal of chemical engineering*, 39(1), 42-51.
<https://doi.org/10.1016/j.sajce.2021.11.009>